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Abstract
We discuss a possible spectral realization of the Riemann zeros based on the
Hamiltonian H = xp perturbed by a term that depends on two potentials
which are related to the Berry–Keating semiclassical constraints. We find
perturbatively the potentials whose Jost function is given by the zeta function
ζ(σ − it) for σ > 1. For σ = 1/2 we find the potentials that yield the smooth
approximation to the zeros. We show that the existence of potentials realizing
the zeta function at σ = 1/2, as a Jost function, would imply that the Riemann
zeros are point-like spectra embedded in the continuum, resolving in that way
the emission/spectral interpretation.

PACS numbers: 02.10.De, 05.45.Mt, 11.10.Hi

1. Introduction

One of the most important problems in mathematics is the proof of the Riemann hypothesis
(RH) which states that the non-trivial zeros of the classical zeta function all have a real part
equal to 1/2 [1, 2]. The importance of this conjecture lies in its connection with the prime
numbers. If the RH is true then the statistical distribution of the primes will be constrained
in the most favorable way. According to Michael Berry, the truth of the RH would mean that
‘there is music in the primes’ [3, 4]. Otherwise, in the words of Bombieri, the failure of the
RH would create havoc in the distribution of the prime numbers [5].

So far, the proof of the RH has resisted the attempts of many and most prominent
mathematicians and physicists for more than a century, which explains in part its popularity
[6–8]. For these and other reasons the RH stands as one of the most fundamental problems in
mathematics for the 21st century with possible implications in physics. In fact, physical ideas
and techniques could probably be essential for a proof of the RH [9, 10]. This suggestion goes
back to Polya and Hilbert who, according to the standard lore, proposed that the imaginary
part of the non-trivial Riemann zeros are the eigenvalues of a self-adjoint operator H and hence
real numbers. In the language of quantum mechanics the operator H would be nothing but a
Hamiltonian whose spectrum contains the Riemann zeros.

The Polya–Hilbert conjecture was for a long time regarded as a wild speculation until
the works of Selberg in the 1950s and those of Montgomery in the 1970s. Selberg found a
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remarkable duality between the length of geodesics on a Riemann surface and the eigenvalues
of the Laplacian operator defined on it [11]. This duality is encapsulated in the so-called
Selberg trace formula, which has a strong similarity with the Riemann explicit formula relating
the zeros and the prime numbers. The Riemann zeros would correspond to the eigenvalues,
and the primes to the geodesics. This classical versus quantum version of the primes and the
zeros was also at the heart of the so-called quantum chaos approach to the RH (see later). Quite
independently of Selberg’s work, Montgomery showed that the Riemann zeros are distributed
randomly and obeying locally the statistical law of the random matrix models (RMM) [12].
The RMM were originally proposed to explain the chaotic behavior of the spectra of nuclei,
but they have applications in another branch of physics, especially in condensed matter [13].
There are several universality classes of random matrices, and it turns out that the one related to
the Riemann zeros is the Gaussian unitary ensemble (GUE) associated with random Hermitian
matrices. Montgomery’s analytical results found an impressive numerical confirmation in the
works of Odlyzko in the 1980s, so that the GUE law, as applied to the Riemann zeros is
nowadays called the Montgomery–Odlyzko law [14].

It is worthwhile to mention that the prime numbers, unlike the Riemann zeros, are
distributed almost at random over the set of integers. Indeed, it is believed that one can find
arbitrary pairs of nearby odd numbers n, n + 2, as well as pairs arbitrarily separated. The only
thing known about the distribution of the primes is the Gauss law according to which the nth

prime pn behaves asymptotically as pn ∼ n/ log n [1]. This statement is called the prime
number theorem proved by Hadamard and de la Valle–Poussin in 1896. If the RH is true then
the deviation from the Gauss law is of order

√
n log n. The analog of the Gauss law for the

imaginary part of the Riemann zeros (called it E) is given by the Riemann law where the nth

zero behaves as En ∼ 2πn/ log n. Hence, large prime numbers are progressively scarced,
while large Riemann zeros abound.

An important hint suggested by the Montgomery–Odlyzko law is that the Polya–Hilbert
Hamiltonian H must break the time reversal symmetry. The reason being that the GUE
statistics describes random Hamiltonians where this symmetry is broken. A simple example is
provided by materials with impurities subject to an external magnetic field, as in the quantum
Hall effect.

A further step in the Polya–Hilbert–Montgomery–Odlyzko pathway was taken by Berry
[3, 4], who noticed a similarity between the formula yielding the fluctuations of the number
of zeros, around its average position En ∼ 2πn/ log n, and a formula giving the fluctuations
of the energy levels of a Hamiltonian obtained by the quantization of a classical chaotic
system [15]. Comparison between these two formulae suggests that the prime numbers
p correspond to the isolated periodic orbits whose period is log p. In the quantum chaos
scenario the prime numbers appear as classical objects, while the Riemann zeros are quantal.
This classical/quantum interpretation of the primes/zeros is certainly reminiscent of the one
underlying the Selberg trace formula mentioned earlier. One success of the quantum chaos
approach is that it explains the deviations from the GUE law of the zeros found numerically
by Odlyzko. The similarity between the fluctuation formulae described above, while rather
appealing, has a serious drawback observed by Connes which has to do with an overall sign
difference between them [16]. It is as if the periodic orbits were missing in the underlying
classical chaotic dynamics—a fact that is difficult to understand physically. This and other
observations lead Connes to propose a rather abstract approach to the RH based on discrete
mathematical objects known as adeles [16]. The final outcome of Connes’s work is a trace
formula whose proof, not yet found, amounts to that of a generalized version of the RH. In
the Connes approach there is an operator, which plays the role of the Hamiltonian, whose
spectrum is a continuum with missing spectral lines corresponding to the Riemann zeros. We

2



J. Phys. A: Math. Theor. 41 (2008) 304041 G Sierra

x p = Ep

x

x p = Ep

x

pl

x

E/l pxl

h

(1a) (1b)

(1c) (1d)

x p = E

Λ

ΛE/Λ x

p

ΛE/

Λ

E/Λ

x p = E

x

p

l x

E/l

E/l

x

Figure 1. (a) A classical trajectory of the Hamiltonian H = xp. The regions in shadow are the
allowed phase space of the semiclassical regularizations of H = xp considered by (b) Berry and
Keating, (c) Connes and (d) Sierra.

are thus confronted with two possible physical realizations of the Riemann zeros, either as
point-like spectra or as missing spectra in a continuum. Later on we shall see that both pictures
can be reconciled in a QM model having a discrete spectra embedded in a continuum.

2. Semiclassical approach

In 1999 Berry and Keating on the one hand [17, 18], and Connes on the other [16], proposed
that the classical Hamiltonian H = xp, where x and p are the position and momenta of a 1D
particle, is closely related to the Riemann zeros. The classical trajectories of the particle are
hyperbolas in the phase space (x, p); hence one should not expect a discrete spectrum even at
the semiclassical level (see figure 1). To overcome this difficulty, Berry and Keating proposed
to restrict the phase space to those points where |x| > lx and |p| > lp, with lx lp = 2πh̄. The
number of semiclassical states, N (E), with energy between 0 and E is given by the allowed
area in phase space divided by h = 2π(h̄ = 1) (see figure 1):

N (E) = E

2π

(
log

E

2π
− 1

)
+ 1. (1)

Equation (1) coincides asymptotically with the smooth part of the formula that gives the number
of Riemann zeros in the same interval. This result is really striking given the simplicity of
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the Hamiltonian and the assumptions made. On the other hand, Connes started on the same
classical Hamiltonian H = xp, but constrained the phase space to those trajectories satisfying
|x| < �, |p| < �, with � being a cutoff which is sent to infinity at the end of the calculation.
The number of semiclassical states is given by

N (E) = E

π
log � − E

2π

(
log

E

2π
− 1

)
. (2)

The first term describes a continuum of states in the limit � → ∞, while the second term
coincides with minus the average position of the Riemann zeros (1). This result lead Connes
to propose the missing spectral interpretation of the Riemann zeros described earlier.

A third possible regularization of the xp model, proposed in [19, 20], is that lx < x < �,
which leads to the following counting of semiclassical states:

N (E) = E

2π
log

�

lx
. (3)

This result agrees with the asymptotic part of (2), meaning that there is a continuum spectrum
but the possible connection with the Riemann zeros is lost. The main advantage of the latter
regularization is that it arises from a consistent quantization of H = xp, unlike the two
previous semiclassical regularizations.

3. Quantization of xp and 1/(xp)

The classical Hamiltonian H = xp can be consistently quantized in two cases depending on
the choice of the domain in the x coordinate: (1) 0 < x < ∞ and (2) lx < x < � [20, 21].
In the first case H is essentially self-adjoint, while in the second it admits a one-parameter
self-adjoint extension. We shall consider the latter case. To do so one first define the normal
ordered operator [17]

H0 = 1

2
(xp + px) = −i

(
d

dx
+

1

2

)
(4)

where p = −id/dx. The formal eigenfunctions of (4) are

ψE(x) = C

x1/2−iE
, 1 < x < N, (5)

where we have normalized lx = 1 and � = N . One can show that (4) is self-adjoint if the
wavefunctions satisfy the boundary condition

eiθψE(1) = N1/2ψE(N), (6)

where the angle θ parameterizes the self-adjoint extension of H. Imposing (6) on (5) yields

N iE = eiθ (7)

which determines the eigenvalues of H

En = 2π

log N

(
n +

θ

2π

)
, n = 0,±1, . . . . (8)

This equation agrees with the semiclassiclassical result (3). In the particular case where θ = π ,
the spectrum (8) becomes symmetric around 0. Note that the zero eigenvalue is excluded.
Another way to derive this result is by considering the inverse of the operator (4). This can be
done as follows:

H0 = 1
2 (xp + px) = x

1
2 px

1
2 → H−1 = x− 1

2 p−1x− 1
2 (9)

4
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where x1/2 is well defined since x > 1. The inverse of the momenta operator p is given by the
1D Green function

p−1 = i

2

sign(x − x ′)√
xx ′ , (10)

where sign(x − x ′) is the sign function. The Schrödinger equation associated with (9) is

i

2

∫ N

1
dx ′ sign(x − x ′)√

xx ′ ψE(x ′) = 1

E
ψE(x), (11)

which in terms of the new wavefunction

φE(x) = x− 1
2 ψE(x) (12)

becomes

xφE(x) − iE

2

∫ N

1
dx ′ sign(x − x ′)φE(x ′) = 0, (13)

whose solution is

N iE = −1, φ(x) = C

x1−iE
. (14)

Hence we recover equations (5) and (7) in the particular case where θ = π . On the other
hand, equation (13) looks as the eigenvalue equation of yet another Hamiltonian that we shall
discuss next.

4. Relation with the Russian doll BCS model

In [22–24] it was defined an extension of the BCS model of superconductivity, called the
Russian doll model, whose Hamiltonian, when restricted to the one-body case, becomes

HRD(x, x ′) = ε(x)δ(x − x ′) − 1
2 (g + ih sign(x − x ′)) (15)

where ε(x) represents the energies of pairs of electrons occupying time reversed states in the
band 1 < x < N, g is the standard BCS coupling constant and h a coupling that breaks the
time reversal symmetry. The eigenstates and eigenfunctions of (15) are given by(

N − ERD

1 − ERD

)ih

= g + ih

g − ih
, φ(x) = C

(x − ERD)1−ih
. (16)

Comparing (16) with (14), one obtains the following map between the eigenstates of the xp

model and the RD model,

ERD = 0 ↔ E �= 0

h ↔ E

h

g
↔ tan(θ/2)

φ ↔ x−1/2ψE,

(17)

in the particular case where g = 0 and then θ = π . One can add a g coupling term in the
definition (9) of the operator H−1, in which case the correspondence between the RD model
and the xp model will cover all the self-adjoint extensions of xp. The RD model provides
an example where the renormalization group, instead of ending at fixed points, runs in cycles
[25–27]. In the RD model, the coupling that runs periodically under the RG is g, with a period
equal to 2π/h, while the coupling h remains invariant. This fact in turn implies the existence
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of several bound states whose number is given by n = h/(2π) log N . If we replace h by E, the
latter equation becomes n = E/(2π) log N , which coincides with the number of eigenstates
of the xp model.

Incidentally, we would like to mention that the field theory realizations of the cyclic
renormalization group of [28–30] are at the origin of LeClair’s approach to the RH [31].
In this reference the zeta function on the critical strip is related to the quantum statistical
mechanics of non-relativistic, interacting fermionic gases in 1d with a quasi-periodic two-
body potential. This quasi-periodicity is reminiscent of the zero temperature cyclic RG of
the quantum mechanical Hamiltonian of [20], but the general framework of both works is
different.

5. H0 = xp with interactions: general model

The previous results establish an interesting correspondence between two apparently different
models which also suggests a way to add interactions to the xp model. Indeed, the interacting
term of the RD Hamiltonian (15) that is proportional to the coupling constant g is basically
a projector operator |BCS〉〈BCS|, with a wavefunction 〈x|BCS〉 = 1∀x. As we said above,
adding that term to the inverse Hamiltonian (9) would give rise to a θ �= π term associated with
the self-adjoint extensions of xp. Instead we want to add an interacting term that reflects the
existence of two boundaries in the BK regularization of the xp model. The simplest possibility
is to define

H−1 = H−1
0 +

i

2
(|ψa〉〈ψb| − |ψb〉〈ψa|) (18)

where ψa,b are two wavefunctions whose properties will be specified below. The matrix
elements of (18) read

H−1(x, x ′) = i

2

sign(x − x ′) + a(x)b(x ′) − a(x ′)b(x)√
xx ′ , 1 < x, x ′ < N, (19)

where

ψa(x) = a(x)

x1/2
, ψb(x) = b(x)

x1/2
(20)

are real functions, which guarantee that H−1 is a Hermitian and antisymmetric matrix, so
that its eigenvalues are pairs of real numbers E,−E �= 0. A simplified version of (19) is
obtained by choosing b(x) = 1. The latter model will be denoted as type I, while the former
as type II. For these models to be well defined in the limit N → ∞, we impose the following
normalization conditions:∣∣∣∣∫ ∞

1
dx

f (x)n

x

∣∣∣∣ < ∞, (n = 1, 2),

f =
{
a type I
a, b type II.

(21)

A nice feature of the Hamiltonian (19) is that the Schrödinger equation is exactly solvable,
the reason being that it is equivalent to a first-order differential equation supplemented with
a boundary condition. We shall next present the results obtained in [20]. First of all, the
eigenenergies E of (19) satisfy the equation

FN(E) + FN(−E)N iE = 0 (22)

where FN(E) is a Jost-like function whose expression will given below in the limit N → ∞.
In that limit the eigenfunctions of the type II model are given by

ψE(x) = 1

x1/2−iE

[
C∞ +

∫ ∞

x

dyy−iE

(
da

dy
B − db

dy
A

)]
(23)

6
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setats gnirettacSsetats dnuoB

Figure 2. Pictorial representation of the spectrum of the model. The bound states are the points
where F(E) = 0, which are embedded in a continuum of scattering states.

Table 1. Classification of eigenstates of the model.

Eigenstate C∞ F(E) Eigencondition

Delocalized �=0 �=0 N iE = − F(E)
F(E)∗

Localized =0 =0 F(E) = 0

where A,B,C∞ are integration constants that depend on E. In the limit x → ∞ the functions
a(x), b(x) vanish sufficiently fast so that the wavefunction (23) is dominated by the first term,
i.e.,

lim
x�1

ψE(x) ∼ C∞
x1/2−iE

. (24)

It turns out that C∞ is given by the Jost function (up to a constant which can be taken as 1)

C∞(E) = F(E). (25)

Therefore the energies where F(E) is non-zero correspond to delocalized states which behave
asymptotically as the eigenfunctions of the unperturbed Hamiltonian H0 = (xp + px)/2. For
these states the ratio F(E)/F(−E) gives the scattering phase shift. On the other hand, C∞
vanishes whenever F(E) does. These energies correspond to localized states with a finite
norm. In summary, the spectrum of H consists of a continuum formed by those energies where
F(E) �= 0, plus a discrete part given by the real zeros of F(E) (see figure 2).

Moreover, using the Hermiticity of H one can show from equation (22) that F∞(E) does
not have zeros with Im(E) > 0:

F(E) = 0 ⇒ Im E � 0. (26)

The real zeros of F(E) correspond, as explained above, to localized states, while the complex
zeros below the real axis correspond to resonances. These results are summarized in table 1.

Before giving the expression of F(E) for the type I and type II models we shall introduce
some definitions. First of all, let us define the Mellin transform of a (similarly for b(x)):

â(t) =
∫ ∞

1
dxx−1+it a(x), a(x) =

∫ ∞

−∞

dt

2π
xit â(t). (27)

The reality of a(x) implies

â∗(t) = â(−t), t ∈ R. (28)

Condition n = 1 in equation (21) amounts to

|̂a(0)| < ∞, (29)

while condition n = 2 in equation (21) is equivalent to∫ ∞

1
dx

a(x)2

x
=

∫ ∞

−∞

dt

2π
|̂a(t)|2 < ∞. (30)

7
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The function â(t) is, in fact, the Fourier transform of a(x) in the variable q = log x, which
takes values in the interval (0,∞). In terms of q, a(x) is a square normalizable and causal
function, in which case â(t) has interesting analytic properties by a theorem due to Titchmarsh
[32]. This theorem states that under the previous conditions â(t) is analytic in the complex
upper-half plane and satisfies the formula

â(z) = P

∫ ∞

−∞

dt

iπ

â(t)

t − z
, z ∈ R (31)

where P denotes the Cauchy principal value of the integral. To prove this formula one uses the
fact that â(t) has no singularities in the upper-half plane and that the contour on integration
on the circle |z| = R, Imz > 0 vanishes since lim|z|→∞ |̂a(z)| = 0. For later purposes let us
define the new function

a(t) = it

2
â(t), (32)

and similarly b(t), whose properties follow from those of â(t), namely,

• reality:

a∗(t) = a(−t), t ∈ R, (33)

• regularity:

lim
t→0

|a(t)|
t

< ∞ �⇒ |a(0)| = 0, (34)

• normalizability∫ ∞

−∞

dt

2π

|a(t)|2
t2

< ∞, (35)

• analyticity

a(z) = P

∫ ∞

−∞

dt

iπ

a(t)

t − z
− P

∫ ∞

−∞

dt

iπ

a(t)

t
, z ∈ R. (36)

This equation (implies) that a(z) is an analytic function in the upper-half plane which
converges towards a constant value in a circle of infinite radius given by the last term of
(36).

The next definition involves the product of two analytic functions, f(t) and g(t), in the
upper half-plane:

(f 
 g)(z) = f(z)g(−z) +
∫ ∞

−∞

dt

iπ

f(t)g(−z)

t − z
, z ∈ R, (37)

where the integration is understood in the Cauchy sense as in equations (31) and (36). One
can show that (f 
 g)(z) is an analytic function in the upper half-plane provided f(z)g(−z) is
well behaved, which seems to be the case in all the examples we have analyzed. The analytic
extension of (f 
 g)(z) to the lower half-plane will have in general singularities. In terms of
this product we shall define the function1

Sf,g(z) = (f 
 g)(z) − (f 
 g)(0) (38)

which satisfies the following conditions:

• reality: if f and g verify (33) then

S∗
f,g(z) = Sf,g(−z), z ∈ R (39)

1 The Sf,g(z) differs in a sign respect to the one considered in [20].

8
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• regularity

Sf,g(0) = 1 (40)

• shuffle relation

Sf,g(z) + Sg,f(−z) = 2f(z)g(−z). (41)

The notation ‘shuffle’ is borrowed from the theory of multiple zeta functions, as explained
later on.

After these definitions we can finally give the expression of the Jost function F(E) in terms
of the potentials a(t) and b(t). For the type I model it reads

F(t) = 1 + 2a(t) + Sa,a(t), (42)

while for the type II model it is

F(t) = 1 − Sa,b(t) + Sb,a(t) + Sa,a(t)Sb,b(t) − Sa,b(t)Sb,a(t). (43)

From the properties of the S-functions one can easily derive the following.

• Reality:

F∗(t) = F(−t) z ∈ R. (44)

This condition guarantees that the ratio F(E)/F(−E) appearing in the eigenvalue
equation (22) is indeed a phase.

• Regularity

F(0) = 1 (45)

This condition implies that the zero energy is not an eigenvalue of the Hamiltonian H,
which was the assumptions made by defining it in terms of its inverse.

Let us next consider the two models separately.

5.1. Type I model

The Jost function (42) can be expressed as

F(t) = 1 + 2a(t) + (a 
 a)(t) (46)

where we used that a(0) = 0, which implies

(a 
 a)(0) = 0. (47)

An important consequence of equation (46) is the positivity of the real part of F(t),

ReF(t) = |1 + a(t)|2 � 0, (48)

which imposes a strong constraint on the functions allowing a QM interpretation as Jost
functions of the type I model. In particular, equation (48) excludes the zeta function ζ(σ − it)
for 1/2 � σ < 1, but not the case where σ > 1, as we shall see later on.

The 
-product defined in equation (37) is non-commutative and non-associative.
Nevertheless it behaves nicely respect to the identity function 1, namely

1 
 1 = 1 (49)

and

a 
 1 + 1 
 a = 2a, (50)

9
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Figure 3. Plot of the real and imaginary parts of F(E), as given by equation (56), for the choices
a1 = 0.2, 0.4, 0.6, 1. At a1 = 1 the circle passes through the origin.

where a is an analytic function in the upper half-plane satisfying equation (36). Using these
two equations, the Jost function (46) can be expressed as the square, with respect to the

-product, of a single function, i.e.

F = f 
 f, f = 1 + a (51)

so that f is the 
-square root, of F . Using equation (51) one can easily prove that F(t) does
not have zeros in the upper half-plane. Indeed, write f 
 f as

(f 
 f)(z) =
∫ ∞

−∞

dt

iπ

f(t)f(−t)

t − z
, Im z > 0, (52)

then

Re(f 
 f)(z) =
∫ ∞

−∞

dt

π

y|f(t)|2
(t − x)2 + y2

> 0, z = x + iy (53)

A simple but illustrative example of the theory developed so far is provided by the step potential

a(x) =
{

a1, 1 < x < x1

0, x1 < x < ∞,
(54)

which yields

a = a1

2

(
xit

1 − 1
)
, a 
 a = a2

1

2

(
1 − x iE

1

)
, (55)

and the Jost function

F(t) = 1 +
a1(2 − a1)

2

(
xiE

1 − 1
)
. (56)

Figure 3 shows an Argand plane representation of the real and imaginary parts of (56) for
several values of a1. For a1 = 1 the function F(t) vanishes at the values

En = (2n + 1)π

log x1
, n = 0,±1, . . . , (57)

describing an infinite number of bound states. The remaining values of E correspond to
delocalized states. All the zeros of F(E) lie on the real axis for a1 = 1 and below it for
a1 �= 1.

10
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5.2. Perturbative solution of the type I model

The next problem we address is as follows: given a function F(t), satisfying the analyticity,
reality, regularity and positivity conditions described above, which is the potential, or
potentials, a(t), verifying equation (46)? In this paragraph we shall give a perturbative
method to construct one of those potential in terms of a series which converges under
certain conditions placed on the function F(t). Let us first make the change a → −2a in
equation (46), which becomes

a = g + a 
 a, g = 1 − F
4

. (58)

Iterating (58) generates the series expansion

a = g + g 
 g + g 
 (g 
 g) + (g 
 g) 
 g + · · · . (59)

At order gn one gets all admissible bracketings, whose number is given by Cn−1, where Cn is
the Catalan number

Cn = 1

n + 1

(
2n

n

)
n�1→ 4n

√
πn3/2

(60)

whose asymptotic behavior is also described. To investigate the conditions for the convergence
of (59), let us suppose that g is given by the absolute convergent series

g(t) =
∞∑

n=1

gnn
it , |g(t)| �

∞∑
n=1

|gn| < ∞. (61)

Using (37) one finds

(g 
 g)(t) =
∞∑

n=1

g2
n + 2

∑
n>m

gngm(n/m)it (62)

so that

|(g 
 g)(t)| �
( ∞∑

n=1

|gn|
)2

, ∀t ∈ R. (63)

Similarly, one finds that

|a(t)| �
∞∑

n=1

Cn−1

( ∞∑
m=1

|gm|
)n

, (64)

which, according to (60), converges provided
∞∑

m=1

|gm| � 1

4
. (65)

This condition is sufficient for the convergence of the series (59), but it is not necessary.
Equation (65) implies

|F(t) − 1| � 1, ∀ t ∈ R. (66)

However, the converse is not true (i.e. equation (66) does not imply (65)). We believe that
(66) also guarantees the convergence of (59), but this guess needs to be proved. Observe also
that (66) implies that ReF(t) � 0, which is also a necessary condition for the existence of the
potential a(t). An application of these results is given below.

11
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Figure 4. Real and imaginary parts of the potential a(t) for σ = 2 in the interval t ∈ (10, 25).

5.3. The zeta function with σ > 1

For σ > 1, let us consider the function

F(t) = Cζ(σ − it), C = 1

ζ(σ )
(67)

where the constant C guarantees the normalization condition F(0) = 1. The values of the
constants gn appearing in (61) are given by

g1 = 1 − C

4
, gn>1 = − C

4nσ
, (68)

and the convergence criteria (65) yield
∞∑

m=1

|gm| = 1 − C

2
� 1

4
→ ζ(σ ) � 2, (69)

where the latter conditions are satisfied if

σ � σc = 1.72 865, ζ(σc) = 2. (70)

Moreover, condition (66) can be checked numerically, i.e.,∣∣∣∣ζ(σ − it)

ζ(σ )
− 1

∣∣∣∣ � 1, ∀σ > 1, ∀ t ∈ R, (71)

so we expect that the series (59) will also converge for any value σ > 1. Figure 4 displays the
real and imaginary parts of a(t) for the case σ = 2 obtained by the sum of the first terms of
equation (59). The convergence towards a finite value is clear.

The series (59) contains also an interesting analytical structure, which can be seen from
the star product of two zeta functions,

ζ(σ − it) =
∞∑

n=1

1

nσ−it
→ (ζ 
 ζ )(t) = ζ(2σ) + 2

∞∑
n>m�1

1

nσ−itmσ+it
. (72)

The double sum series of the RHS is equal to a Euler–Zagier zeta function for two variables
which is a generalization of the zeta function. Multivariable versions of this function have
attracted much attention in various fields, such as knot theory, perturbative quantum field
theory, etc (see [33, 34] and references therein).

12
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Figure 5. Left: real and imaginary parts of ζ(s) with s = 1/2 − iE and E ∈ (0, 50). Right: the
same as before for ζH (s) = (s − 1)ζ(s)/s.

5.4. The zeta function at σ = 1/2

The results obtained so far suggests that the Riemann zeta function on the critical line
ζ(1/2 − iE) could perhaps be realized as the Jost function of the model. This idea is
motivated by the scattering approach pioneered by Faddeev and Pavlov in 1975, and has been
followed by many authors [35–38]. An important result is that the phase of ζ(1 + it) is
related to the scattering phase shift of a particle moving on a surface with constant negative
curvature. The chaotic nature of that phase is a well-known feature. Along this line of thoughts,
Bhaduri, Khare and Law (BKL) made in 1994 an analogy between resonant quantum scattering
amplitudes and the Argand diagram of the zeta function ζ(1/2 − it), where the real part of ζ

(along the x-axis) is plotted against the imaginary part (y-axis) [39]. The diagram consists of
an infinite series of closed loops passing through the origin every time ζ(1/2 − it) vanishes
(see figure 5). This loop structure is similar to the Argand plots of partial wave amplitudes of
some physical models with the two axis being interchanged. However, the analogy is flawed
since the real part of ζ(1/2 − it) is negative in small regions of t, a circumstance which never
occurs in those physical systems.

In fact, the loop structure of the models proposed by BKL is identical, up to a scale
factor of 2, to the model with the potential (54) (see figure (3)), where the loops representing
F(E), for a1 = 1, are circles of radius 1/2, centered at x = 1/2. For general models of type
I, the loops are not circles but the real part of F1(E) is always positive (see equation (48)),
and therefore they can never represent ζ(1/2− iE). Incidentally, this constraint does not apply
to the models of type II, where ReF(E) may become negative. This suggests that ζ(1/2− iE)

could indeed be the Jost function F(E) of a type II model for a particular choice of a and b.
If this were the case then the Riemann zeros would become eigenenergies of the Hamiltonian,
realizing, in that manner, the Polya and Hilbert conjecture which may also give hints into the
solution of the Riemann hypothesis. A complete answer to this problem is not yet known, but
we shall present below some encouraging results along this direction.

The first step is to recover quantum mechanically the smooth approximation to the
Riemann zeros. This approximation is equivalent to the following condition:

1 + e2iθ(E) = 0, (73)

where

e2iθ(E) = π−iE �
(

1
4 + iE

2

)
�

(
1
4 − iE

2

) . (74)

13
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The function θ(E) gives the phase of the zeta function, e.g.

ζ(1/2 − it) = Z(t) eiθ(t), (75)

while Z(t) is the Riemann–Siegel zeta function which is real and even due to the duality
relation satisfied by the zeta function (e.g. ζ(1/2 − it) = e2iθ(t)ζ(1/2 + it)). The reason that
(73) is a good approximation to the location of the zeros can be seen in figure 5, which plots
the real and imaginary parts of ζ(1/2 − iE). Observe that in the vicinity of a zero, the curves
cut the imaginary axis where θ(En) = π(2n − 1)/2 so that cos θ(E) = 0, which is nothing
but equation (73). The value of En satisfies

n = θ(En)

π
+

1

2
(76)

which asymptotically coincides with equation (1) up to a constant term. This result can be
obtained choosing the following potential in the type I model

a(x) = −2
sin(2πx)√

x
, (77)

whose Mellin transform (27) gives

â(t) = −2i

t
e2iθ(t) + O(1/t) (78)

up to 1/t terms. The corresponding Jost function is

F(E) = 2(1 + e2iθ(E)) + O(1/E) (79)

whose zeros agrees with (73) asymptotically. Hence the smooth approximation to the Riemann
zeros can be obtained asymptotically by the potential (77). Why this potential is able to yield
this result? One may suspect that it must implement at the quantum level the BK boundary
conditions of the semiclassical approach. Indeed, let us show how this works in detail. The
potential (77) corresponds to the wavefunction

ψa(x) = −2
sin(2πx)

x
(80)

which satisfies the equation

H 2
0 ψa(x) = (

(2πx)2 − 1
4

)
ψa(x), (81)

where H0 = √
xp

√
x is the Hamiltonian (9). Dropping ψa in both sides and replacing H0 by

xp, one obtains a classical version of (81),

(xp)2 = (2πx)2 − 1

4
�⇒ p = ±2π

√
1 − 1

(4πx)2
, (82)

which describes a curve in phase space that approaches asymptotically the lines p = ±2π .
We shall identify these asymptotes with the BK boundary in the momenta |p| = lp. Recall,
on the other hand, the boundary condition x � lx = 1, which combined with the previous
identification reproduces the Planck cell quantization condition,

lp = 2π, lx = 1 �⇒ lplx = 2π. (83)

The BK condition |x| > lx has already built in into the model and this is also reflected in
the state ψb(x) = 1/

√
x which is concentrated near the position lx = 1. In the model we

have proposed, the two BK boundary conditions are realized asymmetrically, as opposed to
the semiclassical model. It would be desirable to have a more symmetric treatment of them.
This indeed can be done and the results will be presented elsewhere.

14



J. Phys. A: Math. Theor. 41 (2008) 304041 G Sierra

The next natural step is to see whether the zeta function ζ(1/2− iE) can be realized as the
Jost function of the model. The analyticity properties of the Jost functions imply that F(E)

must be of the form

F(E) = C
E − i/2

E + iµ
ζ(1/2 − iE) (84)

which does not have poles in the upper-half plane (C and µ > 0 are normalization constants).
In figure 5 we plot an example with µ = 1/2. Since the real part of ζ(1/2 − iE), and thus
of F(E), become negative in small regions of E, one is forced to consider the type II model
with two non-trivial functions, ψa and ψb. The problem of finding ψa,b is rather non-trivial.
One can, in principle, fix one of them, say ψb, and try to solve for ψa as a function of the Jost
function (84) and ψb. In the case of the zeta function ζ(σ − iE), with σ > 1, we were able to
solve this problem perturbatively thanks to the fact that the zeta function is bounded. However,
for σ = 1/2 the zeta function is unbounded which may lead to problems of convergence. In
any case, it seems clear that one needs further physical insights to make progress into this
difficult problem. As we said above, one needs a more symmetric treatment of the coordinates
x and p, and a clearer physical interpretation of the wavefunctions ψa,b. Another important
ingredient to be implemented is the duality symmetry of the zeta function which in the
present formulation of the model is not manifest but which is expected to play a central
role.

In summary, we have presented in this work an interacting version of the xp Hamiltonian
which may ultimately lead to a spectral realization of the Riemann zeros, as suggested long
ago by Polya and Hilbert. The main ingredient of the model is the non-local character of
the interaction in terms of two potentials which are the quantum version of the semiclassical
phase space constraints of Berry and Keating. The generic spectrum of the model consists
of a continuum of eigenstates in the thermodynamic limit which may also contain bound
states embedded in it. We conjecture the existence of potentials giving rise to the Riemann
zeros as the discrete spectrum embedded in the continuum. If this were the case that would
resolve the emission versus absorption spectral interpretation of the Riemann zeros. This
would also open the way to a better understanding of the Riemann hypothesis. We have also
pointed out the need to implement in an explicit way the duality properties of the zeta function,
which implies a more symmetric treatment of the x and p coordinates as in the semiclassical
model.
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